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HYDRODYNAMICS WITH QUADRATIC PRESSURE. 1. GENERAL RESULTS

UDC 532.516+517.95A. P. Chupakhin

A wide class of solutions of Euler equations with quadratic pressure are described. In Lagrangian
coordinates, these solutions linearize exactly momentum equations and are characterized by special
initial data: the Jacobian matrix of the initial velocity field has constant algebraic invariants. The
equations are integrated using the method of separation of the time and Lagrangian coordinates. Time
evolution is defined by elliptic functions. The solutions have a pole-type singularity at a finite time.
A representation for the velocity vortex is given.

Introduction. For the Euler equations describing the motion of an ideal incompressible fluid with velocity
field u = (u, v, w) and pressure p dependent on t and the space coordinates x = (x, y, z):

Du+∇p = 0, divu = 0, (1)

we seek solutions with pressure of the special form

p = k(t)r2/2, r2 = x2 + y2 + z2. (2)

The function k in (2) needs to be determined. We note that an arbitrary function of time can be added to the
pressure in the form of (2).

Exact solutions in ideal fluid mechanics have been extensively studied. Andreev et al. [1] investigated the
group properties of hydrodynamic models. Ovsyannikov [2] considered an exact solution of the Euler equations that
was partly invariant with respect to the rotation group (so-called special vortex). We also cite papers [3–7], which
give exact solutions of Euler equations.

Below we present several arguments in favor of studying exact solutions of hydrodynamic equations with
pressure in the form of (2).

1. In studying barochronic motion of a gas p = p(t), a consequence of momentum equations is the simple
matrix Riccati equation DJ + J2 + kE = 0 for the Jacobian matrix J = ∂u/∂x, in which k = 0. Full information
on the solution of this equation (eigenvalues and invariants, eigenvectors of the matrix J , and separation of the
time variable and Lagrangian coordinates in the solution) provide for a complete description of the corresponding
solutions in gas dynamics. Pressure in the form of (2) adds the scalar matrix kE to the Riccati equation. The
scheme for studying barochronic solutions is applicable in this more complex situation, too. Separation of the time
and Lagrangian variables in the solution remains a fundamental point. In this case, the rational functions of time
are replaced by elliptic functions.

2. Cantwell [3], Popovich [6], and Abrashkin et al. [7] studied solutions of the Euler equations for pressure in
the form of (2) and described them qualitatively. Cantwell [3] integrated the matrix equation for the elements of the
Jacobian matrix, but did not integrate the Euler equations in finite form (with respect to the velocity components)
and did not show that the solutions of the Lamé equations describe trajectories of fluid particles.

3. Classical objects of investigation in gas- and hydrodynamics are solutions with linear velocity fields,
in which the pressure is a quadratic function of space variables [8, 9]. In this case, the gas- and hydrodynamic
equations reduce to a system of ordinary differential equations. The examined solution with pressure in the form
of (2) — a particular case of a quadratic function — does not reduce to solutions with linear velocity fields. The
arbitrariness of this solution is three functions of two arguments.
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4. In recent studies in mathematical physics focus is on solutions that have singularities of the pole type [10].
This is due to the fact that the equations for elliptic functions and the Painlevé equation are the reduced equations
(factor equations) in “large” models of mathematical physics. In hydrodynamic models, solutions of this type have
not been studied in detail.

5. Meiermanov et al. [11] studied variants of the method of separation of time and Lagrangian variables.
In [12], linear equations as factor equations were derived in studying partly invariant solutions of the Euler equations.

In the present paper, we give an algorithm for integrating the Euler equations and study general character-
istics of their solution.

1. Relations for the Invariants. Let J = ∂u/∂x be the Jacobian matrix of the velocity field and ki and
λi (i = 1, 2, 3) be algebraic invariants and eigenvalues of the matrix J , respectively. Then, the following relations
hold:

k1 =
∑
i

λi = trJ = 0, k2 =
∑
i<j

λiλj = −1
2

∑
i

λ2
i = −1

2
trJ2,

k3 = λ1λ2λ3 =
1
3

∑
λ3
i =

1
3

trJ3.

(3)

The Hamilton–Cayley equation for the matrix J is written as

J3 + k2J − k3E = 0, (4)

where E is a unit matrix. A consequence of Eq. (1) with pressure in the form of (2) is the matrix equation

DJ + J2 + kE = 0. (5)

We can show that the sought-for motion of the fluid is defined by the properties of the Jacobian matrix J , which
follow from the matrix Riccati equation (5).

Lemma 1. The algebraic invariants k2 and k3 of the matrix J for the motion described are functions of
time only and are defined from the system of ordinary differential equations

k′2 − 3k3 = 0, k′3 + 2k2
2/3 = 0 (6)

reduced to the equation

k′2
2 = −4k3

2/3 + C, (7)

where C is an arbitrary constant.
The function k = k(t) in (2) has the form

k = 2k2/3. (8)

Proof. Calculating the trace of the matrix from Eq. (5) with allowance for (3), we have 2k2 − 3k = 0 from
which we obtain Eq. (8) and the dependence of k2 only on t.

Multiplying Eq. (5) by the matrix J at the left and right and adding the relations obtained, we have the
equation

DJ2 + 2J3 + 2kJ = 0. (9)

Calculating the traces of both sides of Eq. (9), we obtain the first equation in (6), from which it follows that k3 also
depends only on t. Then, we multiply sequentially Eq. (5) by J2 and J at the left and right. Adding the relations
obtained, we have the equation for J3:

DJ3 + 3J4 + 3kJ2 = 0, (10)

where J4 can be expressed in terms of J and J2 from Eq. (4) and from its consequence for J4. Calculating the
trace of Eq. (10) with allowance for (3) and the relation trJ4 = 2k2

2, we obtain the second equation in (6).
Equation (7) can be obtained from system (6) by excluding the function k3: by differentiating the first

equation in (6) and substituting the values of k′3 from the second equation. The obtained equation k′′2 = −2k2
2 is

multiplied by k′2 and is integrated once to yield the equation for the elliptic Weierstrass function (7).
Remark 1. By extending the variables t = aτ and k2 = bq, in which the constants a and b are determined

from the equations

a6 = 9εC−1, b = −3a−2, ε = ±1, (11)
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using the homogeneity relations for elliptic functions [13], we reduce Eq. (7) to the form(dq
dτ

)2

= 4q3 − 1. (12)

The solution of Eq. (12) is an equianharmonic Weierstrass function [13] q = ℘(τ ; 0, 1).
Remark 2. System (6) has an integral that relates the invariants k2 and k3:

k2
3 + 4k3

2/27 = C/9. (13)

The constant C in the integral (13) [the same constant as in Eq. (7)] is proportional to the discriminant of the
characteristic equation for the matrix J , λ3 + k2λ − k3 = 0. By extending the variables (11), the integral (13) is
reduced to

4q3/27 + s2 = ε/9, (14)

where s = ab−1k3. Equation (14) is equivalent to (12).
Lemma 2. Let λi = λi(t) be eigenvalues of the Jacobian matrix J . Then, the following propositions are

valid:
(a) System (6) is equivalent to the system for the eigenvalues

λ′i + λ2
i −

1
3

∑
j

λ2
j = 0, i = 1, 2, 3. (15)

(b) Let qi = qi(t) be a logarithmic potential of the eigenvalue λi = (ln qi)′ = q′i/qi. Then, qi satisfies the
Lamé equation

q′′i + k(t)qi = 0, (16)

where k = 2k2/3 is an elliptic Weierstrass function.
Proof. (a) Using (3), we write system (6) in terms of λi. Then, solving this system with respect to λ′i, we

obtain (15).
Conversely, (6) follows from (15). Multiplying each equation of (15) by λi and summing up the relations

obtained, we have ∑
i

λiλ
′
i +
∑
i

λ3
i −

1
3

∑
i

λi

(∑
j

λ2
j

)
=

1
2

(∑
λ2
i

)′
+
∑
i

λ3
i = 0.

This is the first equation in (6). The second equation is obtained by multiplication of each equation of (15) by λ2
i

and summation of the relations obtained. Indeed, using the relation
∑
i

λ4
i =

1
2

(∑
λ2
i

)2

, we have

∑
i

λ2
iλ
′
i +
∑
i

λ4
i −

1
3

(∑
j

λ2
j

)(∑
i

λi

)
=

1
3

(∑
λ3
i

)′
+

1
6

(∑
i

λ2
i

)2

= 0.

(b) Substituting the representations λi = q′i/qi and k = −1
3

∑
j

λ2
j into (15), we obtain Eq. (16).

Lemma 2 is proved.
Remark 3. By virtue of the relation

∑
λi = 0, the logarithmic potentials are functionally dependent:

q1q2q3 = const. In addition, they are linearly dependent as three solutions of the second-order equation (16).
2. Representation of the Solution in Euler Coordinates. The results of Sec. 1 allow us to describe

the solution completely.
Lemma 3. Let q be a logarithmic potential of an eigenvalue of the matrix J (see proposition “b” of Lemma 2).

Then, the vector
β = q′x− qu (17)

is conserved along trajectories of fluid particles, i.e., depends only on Lagrangian coordinates.
Proof. We note that by virtue of the momentum equation in (1), for pressure in the form of (2), Du = −kx.

Then,
Dβ = q′′x− q′u+ q′u− qDu = (q′′ + kq)x = 0

by virtue of (16).
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Remark 4. As follows from (17), the motion considered does not reduce to motion with a linear velocity
field. Indeed, substituting the representation u = dx/dt in Lagrangian coordinates into (17) and integrating the
resulting relation, we obtain

x = q[Qβ(x0) +α(x0)], (18)

where Q(t) = −
∫
q−2(t) dt, α and β are vector-functions of the Lagrangian coordinates, determined from the

initial conditions. Because the Lagrangian coordinates are determined with accuracy up to functional substitution,
one of these vectors in the new coordinates can be reduced to β(x0) = x′0. However, the second vector in (18)
remains an arbitrary function of the new Lagrangian coordinates α = α(x′0), from which it follows that this solution
does not reduce to a solution with a linear velocity field.

Lemma 4. The initial field of velocities u0(x0) = u(0,x0) of the motion considered has a special form: the
algebraic invariants of the Jacobian matrix J0 = ∂u0/∂x0 are real numbers.

Vector fields of this type are described in the theory of barochronic motion of a gas [14].
We formulate the main result.
Theorem 1. The velocity field for solution (2) of the Euler equations (1) is determined as an implicit

vector-function from the system
Fi(βi) = 0 (i = 1, 2, 3), (19)

where βi = q′ix− qiu, λi = q′i/qi, and the functions qi satisfy Eqs. (16).
The arbitrary functions Fi in (19) obey the condition of linear independence of the vectors ∇βiFi. The

arbitrariness of the solution obtained is three functions of two variables.
Proof. We show that the vector-function u = u(t,x), which is a solution of (19), satisfies the momentum

equations in (1) written for pressure in the form of (2) and, in addition, the matrix J = ∂u/∂x has algebraic
invariants described by Lemma 1.

We apply the operation D to Eq. (19). Then, as Dβi = q′′i x + q′iu − q′iu − qiDu = q′′i x − qiDu, by virtue
of the linear independence of vectors ∇βiFi, we have Dβi = 0 from the equation Dβi∇βiFi = 0. From this, we
obtain dependence (2) for pressure and, consequently, all the results considered in Sec. 1.

Let T = (∇βiFi) be a matrix whose rows are the components of the corresponding gradients of the func-
tion Fi. Differentiating Eq. (19) with respect to all space variables, we obtain the matrix relation

T
∂βi
∂x

= 0,

from which, by virtue of ∂βi/∂x = q′iE − qiJ , it follows that

TJ = ΛT, (20)

where Λ = diag (λi) is the Jordan form of the matrix J . By virtue of (20), the matrices J and Λ are similar, and,
hence, their algebraic invariants coincide. In this case, T is a transforming matrix, and the vectors of the row ∇βiFi
are the left eigenvectors of the matrix J , which correspond to the eigenvalues λi.

Remark 5. If the matrix J has a pair of complex-conjugate eigenvalues, Eqs. (19) relate complex-valued
functions. The theory of barochronic motion of a gas shows how to obtain the real form of the solution in this case
[14].

Remark 6. Since the relation
∑

λi = 0 is satisfied for the matrix J , the eigenvalue of multiplicity of
3 is impossible. For an eigenvalue of multiplicity of 2, there is a simple representation for λi. Let λ1 = λ2 = λ

and λ3 = −2λ. Then, (15) reduces to one equation, whose solution is λ = λ0/(1 + λ0(t0 − t)), where the constant
λ0 = λ(t0) is the initial value of λ. In this case, rank (J −λE) = 1, and, hence, the multiple eigenvalue corresponds
to a pair of linearly independent left eigenvectors, in terms of which solution (19) is expressed.

Thus, the algorithm for solving the Euler equations (1) with pressure in the form of (2) includes the following
steps.

Step 1. An algebraic structure of the Jacobian matrix J0 for the initial velocity field is specified: the real
numbers k20 and k30 (or λi0 are such that

∑
λi0 = 0).

Step 2. The initial velocity field u0 = u0(x0) is constructed as an implicit function which is a solution of
the equation Fi(u0 − λi0x0) = 0, where the functions Fi satisfy the conditions of Theorem 1.

Step 3. Equation (16) [or system (6)] is integrated subject to the specified initial data (see Step 1).
Step 4. The velocity field u = u(t,x) is determined as a solution of (19).
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Therefore, to find solutions of the form (2), we need to have a sufficiently large number of initial vector fields
(see Step 2) and know how to integrate Eq. (16) or Eq. (6). The Lamé equation in the form of (16) is used to
describe the sought-for motion.

Remark 7. This solution of the Euler equations is of group-theoretical origin and can be obtained using
a two-step algorithm. In the first step, we find a solution of the Euler equations of the “special vortex” type [2].
This is a partly invariant solution with respect to the rotation group of rank 2 and defect 1. In the second step,
we seek an invariant solution of the obtained factor-system for the assumed dilation operator r∂r + U∂U + 2p∂p
(U is the radial velocity component). The invariant representation for pressure has the form of (2). Although
this solution can be analyzed using the formulas describing the “special vortex” [2], this is difficult because of the
complex expression for the angular component ω, which is a tangent to the spheres of the velocity components.

3. Description of the Solution in Lagrangian Coordinates. In Lagrangian coordinates, Eqs. (1) for
the sought-for function x = x(t,x0) with pressure in the form of (2) take the form

d2x

dt2
+ k(t)x = 0 (21)

and describe trajectories of fluid particles subject to the initial data x(0) = x0 (Lagrangian coordinates).
Theorem 2. The motion of a fluid described by the solution at hand has the following properties:
(a) The motion of fluid particles is described by the Lamé equation (21).
(b) The motion of each fluid particle occurs in a plane Π whose position in the space R3(x) is determined

by the initial data for this particle:

Π: x× dx

dt
= B0, B0 = x0 × u0, (22)

where “×” is the sign of the vector product and u0 is the initial velocity of a fluid particle that at t = 0 has
position x0.

Proof. The item (a) is proved above. It is easy to verify that B0 specifies the integral of the system

d

dt
B0 =

d

dt

(
x× dx

dt

)
= x× d2x

dt2
= −kx× x = 0

by virtue of Eq. (21).
There is an analogy between the motion of a fluid particle and the motion of a material point under the

action of the central force F = −kx [15].
Lemma 5. After conversion to the polar coordinates x = R cos θ and y = R sin θ, the equations of motion

of a fluid particle in the plane Π: z = 0, xy′ − yx′ = l0, where l0 is a function of the Lagrangian coordinates, take
the form

dθ

dt
=

l0
R2

,
d2R

dt2
+ k(t)R =

l20
R3

. (23)

The second equation in (23) is Ermakov’s equation.
Proof. By rotation in the space R3(x), which is individual for each particle and depends on the vector

B0, the plane of motion of the fluid particle can be reduced to the plane Π (z = 0). Then, integral (22) takes the
form given in Lemma 5, and l0 depends only on the initial data (Lagrangian coordinates). Conversion to polar
coordinates is implemented in a standard manner. Recently, the relationship between the equation of harmonic
oscillator (21) and Ermakov’s equation (23) has been discussed in many papers (see, for example [16]). The second
equation in (23) describes the evolution of the radius-vector of a fluid particle in spherical coordinates, too. This
means that conversion to this system does not facilitate analysis of the solutions considered.

Lemma 6. The eigenvectors of the matrix J (both left li and right ri) can be constant along trajectories of
fluid particles, i.e., dependent on Lagrangian coordinates.

Proof. Let l be the left eigenvector of the matrix J that corresponds to the eigenvalue λ: lJ = λl. We
apply the operator D to this equality:

DlJ + lDJ = λ′l+ λDl.

Substituting DJ from (5) and λ′ = −λ2−k from (15) into this equation and using lJ2 = λ2l, we obtain DlJ = λDl.
Because the invariant space corresponding to the vector l is one-dimensional, it follows that Dl = bl, where
b = b(t,x) 6= 0. This equation can be integrated in the form l = K(t,x)l0, where Dl0 = 0. Because the proper
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vector is determined with accuracy up to a factor, we can choose l such that it depends only on Lagrangian
coordinates. The proof for the right eigenvector r is similar.

Lemma 7. In the motion studied, the vortex ω = rotu is written as

ω =
3∑
i=1

εiqiri, (24)

where qi is the logarithmic potential of the eigenvalue λi and εi = 0 and 1.
Proof. The equation for the vortex ω = ω(t,x) can be written as

Dω − Jω = 0.

From representation (23), Dω =
∑
i

εiq
′
iri and ω =

∑
εiqiJri =

∑
εiqiλiri. The factors εi appear in the formula

for the vortex because ri 6= 0 and qi 6= 0 by definition. Lemma 6 is proved.
4. General Solution of the Lamé Equation. After substitution of variables (11), Eq. (16) [or each

equation in (21)] takes the form
d2q

dτ2
− 2℘(τ)q = 0, (25)

where ℘(τ) = ℘(τ ; 0, 1) is a solution of Eq. (12). Necessary information on the properties of solutions of the Lamé
equations is given in [17, 18], and that on the elliptic functions is given in [13].

The general integral of Eq. (25) is a meromorphic function. According to the Picard theorem, this equation
is integrated using second-order, doubly periodic functions with the same periods 2ω and 2ω′ as in elliptic functions
that are the coefficients of the equation. Thus, for the general integral of Eq. (25), q = Q(τ), the formulas

Q(τ + 2ω) = µQ(τ), Q(τ + 2ω′) = µ′Q(τ)

are valid. Here the constants µ and µ′ are the so-called factors of the function Q.
Let z0 be a root of the equation ℘(z0) = 0. Then, Eq. (25) has a fundamental system of solutions

qj(τ) = e∓τζ(z0)σ(τ ± z0)/σ(τ), j = 1, 2. (26)

The elliptic Weierstrass function ℘ = ℘(τ ; 0, 1) is defined on a complex plane and is a one-valued, doubly
periodic, analytical function which has a double pole at the point τ = 0. In this equianharmonic case, the
parallelogram of the periods on the complex plane has the vertices 0, 2ω, 2ω2, and 2ω′ (anticlockwise orientation),
where ω2 = ω + ω′ ∈ R, 2ω and 2ω′ are the periods, and ω′ = ω∗. In this case, ω2 ≈ 1.5299 is a real number,
2ω = ω2 + iω2

√
3, z0 = ω2 + iω2/

√
3, and ζ(z0) = ((π/3)ω2) exp(−iπ/6). On the real axis τ ∈ R, the elliptic

function ℘ = ℘(τ ; 0, 1) also takes real values.
Let x0 and u0 = u0(x0) be the initial data for a fluid particle at τ = τ0 and W = q1q

′
2 − q2q

′
1 be the

Wronskian of the fundamental system of solutions (26), and W (τ) = W (τ0) = W0 is a nonzero constant. Then, the
general solution of system (21) is written as

x = W−1
0 [(q′20q1 − q′10q2)x0 + (q10q2 − q20q1)u0(x0)], (27)

where the subscript 0 denotes the values of the corresponding functions at τ = τ0.
Investigation of the properties of the solution in the form of (27) is an independent problem. We can conclude

a priori that the general solution has some singularities of the type of the poles of the elliptic function ℘(τ ; 0, 1). In
this solution, the isobars are spheres whose radii depend on time. Generally, the formulas of solution (27) do not
inherit the spherical symmetry of the pressure distribution. The initial distribution of the velocity field influences
significantly the evolution of the solution. Equation (24) for the velocity vortex gives valuable information on the
evolution of the solution. This equation defines the direction along which the vortex grows without bound.

Conclusions. 1. A complete analytical description is given for a broad class of exact solutions of the Euler
equations describing the motion of an ideal incompressible fluid for which the pressure is proportional to the squared
distance.

2. It is shown that in Euler coordinates, the motion is described by finite formulas that define the velocity
field as an implicit vector-function. The motion dynamics is specified by elliptic functions of time. The properties
of the motion are largely determined by the Jacobian matrix of the velocity field of special form: its algebraic
invariants depend only on time. The Jacobian matrix of the initial velocity field has constant algebraic invariants.
The eigenvectors of the Jacobian matrix are constant along the trajectories.
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3. The Euler equations are integrated using a variant of the method of separation of variables. Elliptic
functions define the dependence of the desired parameters (velocity field, pressure, and vortex) on time, Lagrangian
coordinates specify the initial distribution and velocity of fluid particles, and the initial velocity field is special.

4. The equations of trajectories of fluid particles in Lagrangian coordinates are reduced to the Lamé equa-
tions, which are integrated in second-order, doubly periodic functions. The vortex vector is represented as a linear
combination of the eigenvectors of the Jacobian matrix. A special feature of the motion is that it does not inherit
the symmetry of the spherically symmetric pressure distribution.

5. For the solutions derived, the factor equations of the Euler equations are linear second-order equations.
The method of separation of variables applied to these equations yields the formula for the general solution.

6. The solutions have singular points t∗ that correspond to the poles of the elliptic functions. Thus, in the
vicinity of the corresponding times, the pressure and the vector components tend to infinity. Physical interpretation
of the motion of the fluid is obviously possible only for times t > t∗ or t < t∗.

7. If the Jacobian matrix J = ∂u/∂x has a multiple eigenvalue, the equations of trajectories are integrated
over time in elementary functions.

In the forthcoming paper, we will give examples illustrating the behavior of trajectories of fluid particles for
various initial data and the evolution of an elementary spherical fluid volume.
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